首页> 外文OA文献 >Semiclassical theory of non-local statistical measures: residual Coulomb interactions
【2h】

Semiclassical theory of non-local statistical measures: residual Coulomb interactions

机译:非局部统计测量的半经典理论:残余库仑   互动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a recent letter [Phys. Rev. Lett. {\bf 100}, 164101 (2008)] and within thecontext of quantized chaotic billiards, random plane wave and semiclassicaltheoretical approaches were applied to an example of a relatively new class ofstatistical measures, i.e. measures involving both complete spatial integrationand energy summation as essential ingredients. A quintessential example comesfrom the desire to understand the short-range approximation to the first orderground state contribution of the residual Coulomb interaction. Billiards, fullychaotic or otherwise, provide an ideal class of systems on which to focus asthey have proven to be successful in modeling the single particle properties ofa Landau-Fermi liquid in typical mesoscopic systems, i.e. closed or nearlyclosed quantum dots. It happens that both theoretical approaches give fullyconsistent results for measure averages, but that somewhat surprisingly forfully chaotic systems the semiclassical theory gives a much improvedapproximation for the fluctuations. Comparison of the theories highlights acouple of key shortcomings inherent in the random plane wave approach. Thispaper contains a complete account of the theoretical approaches, elucidates thetwo shortcomings of the oft-relied-upon random plane wave approach, and treatsnon-fully chaotic systems as well.
机译:在最近的一封信中[Phys。牧师{\ bf 100},164101(2008)],并且在量化混沌台球的背景下,将随机平面波和半经典理论方法应用于相对较新的一类统计量度的示例,即涉及完全空间积分和能量求和为基本要素的量度。一个典型的例子来自于对残差库仑相互作用对一阶基态贡献的短程近似的理解。台球,无论是完全混沌的还是其他方式,都提供了理想的系统类别,因为它们已被证明可以成功地对典型介观系统(即封闭或接近封闭的量子点)中的Landau-Fermi液体的单粒子性质进行建模。碰巧这两种理论方法都给出了测量平均值的完全一致的结果,但是半古典理论在某种程度上出乎意料地使系统变得混乱,半经典理论对波动有了很大的改进。理论上的比较突出了随机平面波方法固有的一些关键缺点。本文完整地介绍了理论方法,阐明了经常依赖的随机平面波方法的两个缺点,并且还对非完全混沌系统进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号